最后收购的估值也就300亿美金

  另外一个事情是,怎么把商业做好?也就是说产品,从技术到产品又是另外一个阶段的事情。我做了一个自己觉得芯片性能特别好,但是它并不一定是客户想要的。你要花很多时间去理解客户,接触到客户真实的需求,最终把客户绑定到产品上。让用户爱用,芯片要有比较完整的开发流程。买任何一个GPU上面的软件是不用改的,就像买任何一宽英特尔的CPU上一样,三年前写的GPU也能够在现在的GPU上跑的很好。哪怕是一个菜鸟,用GPU跑一些程序,可能过几周就已经用的很熟了,用户体验就非常棒。
 
  第三点,是用户到底需要什么?我原来提供了一些想法,尽量的减少客户的开发以及能够尽可能的增加收入,这一页也不太展开的去讲。
 
  第四点,芯片公司和软件算法应用公司是分开的,这就导致我如果要做一个芯片,很多人会有不一样的需求和打算,我不知道芯片到底能不能满足他们,或者在满足各种要求时做的特别好。比如英特尔一个竞争优势也是历史最大的包袱,它兼容过往几十年的架构,变得越来越臃肿,这是一个包袱。现在有一些公司开发芯片特别迅猛,比如谷歌在开发TPU的芯片,他们大概2014、2014年做芯片,几年时间就能跟英伟达打平了。就是因为谷歌在开发芯片时,只需适用自家的东西,限定了范围。我们这边在做的很多事情也是,把算法和芯片放在一起做一个完整优化的呈现。
 
  我们公司非常核心的一个技术叫深度压缩。一个简单的启发式的想法:据不同研究,人脑有300亿到800亿个不等的神经元的数量,但是在人的真正日常思考中,你的大脑只有5%左右的神经元是激活的,其实大脑95%的部分是在休眠,这个概念也可以被延伸到所谓的深度学习人工神经网络里面。当芯片功能启用时,其实里面大部分参数对于实际结果没有影响,我们可以把无关的参数删除。然后再考虑上层的芯片架构如何设计,这两个结合在一起可以取得好的效果。我们再往下看,如果我只做IP核,大家想ARM一年的收入是多少,一年卖出几十个亿台设备,最后收购的估值也就300亿美金,总收入也是不高的。为什么?卖一个芯片25美金,IP核授权给客户生产,收入产生会很慢。ARM做了好几十年才慢慢到了现在这样的地步。如果你作为AI芯片公司,需要考虑到底是做哪几层,如果只做到IP核层面,不把芯片做出来,一个是收入规模严重不足,量很少,每一个芯片收的钱也少;另一点是收入滞后,当芯片生产出来已经一年以后了。当生产出来的芯片被系统和解决方案公司的用到产品里去,又一年过去了,从芯片设计完成到实际收入需要两年,这时候你就要考虑,是不是把芯片做了,把IP做了,把系统也做了。你的指令集没有人开发Windows,都没有人做这个谁来开发软件?你要有很漂亮的原来的案例,这时候你说是不是得把算法库,把一些应用的案例也做了。这是一个非常复杂的问题。你得把芯片、系统、软件甚至把算法和解决方案全都给做了。